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Conformational properties of bottle-brush polymers

N. A. Denesyuk*
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 17 March 2002; revised manuscript received 18 December 2002; published 27 May 2003!

General and renormalized perturbation theories are used to study the conformational properties of a bottle-
brush molecule, composed of multiarmed polymer stars grafted regularly onto a flexible backbone. The end-
to-end distances of the backbone and of an arm of the middle star are calculated within the first order of
perturbation theory. For the high grafting densities of stars, the calculated expressions are generalized with the
help of the scaling arguments to give the equivalent power laws. According to these laws, the molecule may
adopt a sequence of three different conformations~star-rod-coil! as the length of the backbone grows.
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I. INTRODUCTION

Cylindrical comb copolymer brushes, or bottle-brush m
ecules, have been attracting much experimental@1–8# and
computational@9–14# attention. Such molecules consist of
flexible backbone grafted densely with either flexible or rig
side chains. The high grafting density of side chains imp
that the number of the backbone segmentsL, confined be-
tween the adjacent points of grafting, is much smaller th
the degree of polymerizationN of a side chain. In the pres
ence of excluded volume interactions, the grafted chains
to avoid strong overlapping, which induces a significant
crease in the stiffness of the backbone. As a result, the bo
brush molecule can be found in three different conform
tional states depending on the backbone’s molecular wei

If the size of the backbone is much smaller than that o
side chain, the bottle-brush molecule effectively represen
star, in which the number of arms is equal to the total num
of the grafted chains. As the length of the backbone gro
but remains smaller than a certain crossover value, the s
of the molecule changes gradually from a sphere into a
cylinder. The radius of such a cylinder is given by the size
the grafted chains, while its length grows proportionally
the backbone’s molecular weight. Finally, when the size
the backbone is sufficiently large, the grafted chains are
longer a restriction on the backbone’s folding and it adop
highly swollen coil-like conformation. We should note th
such a rich conformational behavior can only be observe
high grafting densities of the side chains, i.e., whenL!N.
For L;N the backbone chain always remains flexible a
only slightly extended due to the excluded volume inter
tions of the side chains.

The cylindrical conformations of the bottle-brush mo
ecules have been studied in detail within a self-consis
field approach@15–17#. In this analysis, the backbone
modeled as a semiflexible chain characterized by its pe
tence and contour lengths. The grafting of side chains
creases the original persistence length of the backbone,
this increase can be determined by comparing the free e
gies of the fully stretched and the slightly bent brush
@15,16#. With regard to the conformational properties of t
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side chains, the numerical self-consistent field calculat
@17# as well as the simple variational approach@18#, provide
the two-dimensional exponentn53/4 ~characteristic of a cy-
lindrical conformation! in the power law dependence be
tween the size of a side chain and its length. This cor
sponds to the physical situation where each side chai
confined to a narrow disk created by the neighboring cha
and can wander only in directions perpendicular to the ba
bone. Computer simulations@9,10,14# show, however, that
the size of a side chain obeys the scaling law with the thr
dimensional exponentn53/5 ~characteristic of a star confor
mation!, although some authors@11–13# report slightly
larger values ofn. This suggests that the side chains a
found at the crossover between their three-dimensional
quasi-two-dimensional configurations. Therefore, in t
present work, we go beyond the self-consistent field anal
and study the complete conformational behavior of the co
copolymer brushes.

We consider a bottle-brush molecule with a fully flexib
backbone and side chains of the same chemical composi
placed in a very good solvent so that the excluded volu
correlations are significant. The number of side chainsf,
attached to each point of branching is taken to be arbitr
i.e., f >1. We treat such a system withinrenormalizedper-
turbation theory as discussed in Ref.@19# ~see Appendix A
for a brief summary!. In the following sections we construc
a first-order perturbation theory for the end-to-end dista
of the backbone and of a central side chain in the bot
brush molecule. This perturbation theory is then renorm
ized in order to remove the divergencies caused by the h
degrees of polymerization of the linear chains. The cal
lated first-order corrections depend on the grafting density
the side chains and parameterf and remain small for the
sufficiently low values of these parameters. In this case,
first-order corrections give the correct estimates of the ad
tional swelling of the linear chains comprising the molecu
which is due to the mutual connectivity of these chain
However, when parametersN/L and f are large, the calcu-
lated expressions diverge and cannot be used directly to
timate the examined end-to-end distances. At this point,
employ the scaling arguments to transform the first-or
corrections into equivalent power laws.

A discussion of the resulting scaling relationships a
crossovers between them is contained in Secs. III D, IV, a
©2003 The American Physical Society03-1
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V. In addition, in Sec. V we present a scaling argument
obtain the persistence length of a long bottle-brush molec
and compare our result with other predictions of the sa
quantity @15,20,21#.

II. DESCRIPTION OF THE MODEL

In this work a bottle-brush molecule is modeled byM
stars, each containingf flexible chains of lengthN, grafted
regularly with intervals ofL segments onto a flexible back
bone of lengthL(M21) ~see Fig. 1!. Since we assume th
presence of excluded volume correlations, we apply
model of a self-repelling Gaussian chain to describe eac
the linear chains comprising the molecule~one backbone and
f M side chains!. The partition function of the entire mol
ecule takes the form

Z5E D@r #exp@2V~r $ i ,k%!#, ~1!

where subscripti labels polymer segments within the line
chaink. In Eq. ~1! we denote

D@r #5 )
i 50

L(M21)
dr $ i ,0%

~4p l 2!d/2)k51

f M

)
i 50

N
dr $ i ,k%

~4p l 2!d/2
~2!

and

exp~2V!5 )
i 1k1 ,i 2k2

@12~4p l 2!d/2bed~r $ i 1 ,k1%2r $ i 2 ,k2%!#

3expS 2
1

4l 2 (
i 51

L(M21)

(r $ i ,0%2r $ i 21,0%)
2

2
1

4l 2 (
k51

f M

(
i 51

N

(r $ i ,k%2r $ i 21,k%)
2D . ~3!

Parametersl andbe stand for the segment size and exclud
volume, respectively, whereasd is the spatial dimension. We
can now introduce the pair correlation functio
P(r ,$ i 1 ,k1%,$ i 2 ,k2%), which describes the probability of tw

FIG. 1. Schematic representation of a bottle-brush molec
studied in this paper.
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segments$ i 1 ,k1% and $ i 2 ,k2% being separated by a distanc
r . We will be concerned with the Fourier transform
P(r ,$ i 1 ,k1%,$ i 2 ,k2%),

P~q,$ i 1 ,k1%,$ i 2 ,k2%!

5
1

ZE D@r #exp@ iq•~r $ i 1 ,k1%2r $ i 2 ,k2%!#exp~2V!.

~4!

The function P(q) is often used to calculate the mea
squared distanceR2 between the labeled segments,

R2522d
]

]q2
P~q!uq50 . ~5!

A specific choice of$ i 1 ,k1% and$ i 2 ,k2% defines the scale on
which the molecule is considered. In the two interesti
cases,$ i 150,k1Þ0%, $ i 25N,k25k1% and $ i 150,k150%,
$ i 25L(M21),k250%, Eq. ~5! provides estimatesRt andRl
for the diameter and the extent of a bottle-brush molecule
a starting point, we calculate these quantities by expand
Eqs.~4! and~5! to the first order in powers ofbe . Each term
in such an expansion can be depicted as a diagram and
be calculated using the Feynman rules. We will first consi
Rt to illustrate the method.

III. GENERAL AND RENORMALIZED PERTURBATION
THEORIES FOR THE END-TO-END DISTANCE

OF A SIDE CHAIN

A. The Feynman rules

Let G(q) denote the path integral in Eq.~4!,

G~q,$ i 1 ,k1%,$ i 2 ,k2%!

5E D@r #exp@ iq•~r $ i 1 ,k1%2r $ i 2 ,k2%!#exp~2V!.

~6!

Then Eq.~4! can be rewritten in the form

P~q,$ i 1 ,k1%,$ i 2 ,k2%!5
G~q,$ i 1 ,k1%,$ i 2 ,k2%!

G~0,$ i 1 ,k1%,$ i 2 ,k2%!
. ~7!

If the perturbation series forG(q) is known,

G~q!5G0~q!1beG1~q!1O~be
2!, ~8!

it can also be defined for the functionP(q),

P~q!5
G0~q!

G0~0!
1beS G1~q!

G0~0!
2

G0~q!G1~0!

G0
2~0!

D 1O~be
2!

5P0~q!1beS G1~q!

G0~0!
2P0~q!

G1~0!

G0~0! D1O~be
2!. ~9!

HereP0(q) is the end point distribution of an ideal chain,

P0~q,n!5exp~2q2l 2n!, ~10!

le
3-2
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CONFORMATIONAL PROPERTIES OF BOTTLE-BRUSH . . . PHYSICAL REVIEW E67, 051803 ~2003!
n being the chain length. Diagrammatic representations
functionsG0(q,$0,k1%,$N,k1%) and beG1(q,$0,k1%,$N,k1%)
are shown in Fig. 2@note that we do not include the diagram
that give a zero contribution to Eq.~9!#. In Fig. 2 the poly-
mer is depicted by a solid line, while broken lines conn
the interacting segments. Every diagram contains spe
points of different types, namely, segments$0,k1% and
$N,k1% marked with crosses, as well as interacting segme
points of branching and free ends marked with dots. A so
line connecting two special points is called a propagator,
each diagram contains only those propagators that affec
value. The calculation is performed according to the gen
Feynman rules constructed for systems of linear chains.
main peculiarity of the present system is the existence
branching points whose effect is identical to that of the
teracting segments. Following the Feynman rules, we at
a certain momentum variable to each propagator line resp
ing momentum conservation throughout. Segments$0,k1%
and $N,k1% carry additional external momentaq and 2q,
while the external momenta of free ends equal zero. E
propagator of lengthn and momentumk produces a factor
of P0(k,n); a broken line yields an additional factor o
2(4p l 2)d/2be . To obtain the final value of a diagram w
need to integrate over all internal momenta*ddk/(2p)d,
then sum over variable side chains and points of interac
and finally multiply the result by an overall factor o
V/(4p l 2)d/2, V being the system volume.

B. General perturbation theory

Let us now look at the physical meaning of the diagra
shown in Fig. 2. The simplest diagramD0 of Fig. 2~a! con-
tains no broken lines and stands for the ideal approxima
P0(q) to the end-to-end distributionP(q). In turn, all dia-
grams in Figs. 2~b!–2~e! contain a single broken line an
represent different interactions of chaink1. Thus, diagram
D1 incorporates the interactions of chaink1 with itself; we

FIG. 2. Diagrammatic representations of the zero-orderD0 ~a!
and the first-orderD1 ~b!, D2 ~c!, D3 ~d!, D4 ~e! corrections to the
end-to-end distribution of a side chain.
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of

t
ial

s,
d
d
its
al
he
f

-
ch
ct-

h

n

s

n

note that a single interacting polymer chain has been stu
in detail elsewhere@22–24#. D2 takes account of the interac
tions with the backbone that causes some additional swe
of the chaink1. The corresponding swelling factor depen
on the lengths of both chains, as well as the position of
side chain along the backbone, but always remains of o
1. DiagramD3 presents the interactions of chaink1 with
other chains within the same star, and its value is prop
tional to f 21. It does not depend on the parametera
5L/N that defines the grafting density of stars in the bott
brush molecule. Finally, diagramD4 allows for the interac-
tions of a given side chain with chains belonging to oth
stars and has a dominant value in the case of high graf
density ~small a). In this limit, D4 is proportional to the
ratio f /a ~see below! that plays an important role in th
scaling properties of a bottle-brush molecule.

With this physical interpretation, we can express the e
to-end distributionP(q) in the form

P~q,$0,k1%,$N,k1%!5P0~q,N!$12beN
«/2@D1~Q!

1D2~Q,a,m1 ,M !1D3~Q, f !

1D4~Q, f ,a,m1 ,M !#1O~be
2!%,

~11!

where new designationsQ5q2l 2N and «542d are intro-
duced; parameterm1 denotes the star that contains chaink1,

k1P@ f ~m121!11,f m1#.

The detailed expressions forDi(q) are given in Appendix B.
FunctionsDi(q) appear to change very slightly for differen
values ofm1, and we conclude that the physical properties
all side chains are roughly the same. We will, therefore, c
centrate our attention on a chain belonging to the central s
which is characterized bym15(M11)/2. The correspond-
ing expressions for the end-to-end distanceRt of such a
chain, obtained from Eqs.~11! and ~5!, are also included in
Appendix B.

C. Renormalized perturbation theory

At this stage we apply the renormalization group tec
niques, sketched in Appendix A, to transform the end-to-e
distanceRt of a central side chain into the strict« expansion.
We simply express Eq.~B2! of Appendix B in terms of the
renormalized parametersl R , nR , u5u* and expand the re
sult to the first order in powers of«. We get

Rt
252dlR

2nRF11
«

8
~R̄11R̄21R̄31R̄4!1O~«2!G , ~12!

where

R̄15 ln nR21, R̄25R2ud545h~X!,

R̄35R3ud545~ f 21!S ln 22
1

4D ,
3-3
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R̄45R4ud545
2 f

c21E0

c21

dzz@C~M̄111z!2C~M̄1c1z!

1C~c1z!2C~11z!] 1 f ~c21!

3@C~M̄12c21!2C~M̄1c!

1C~c!2C~2c21!]

and

h~X!52X lnS 11
1

XD2
X

X11
,

c511
1

a
, M̄5

M21

2
, X5aM̄ , C~z!5

d ln G~z!

dz
.

It is appropriate to consider the ratioRt /Rt0, whereRt0 is
the end-to-end distance of a given side chain when it is
connected to other chains. In this case, the renormalized
gree of polymerizationnR drops out from Eq.~12! and we
have

Rt
2

Rt0
2

511
«

8
~R̄21R̄31R̄4!1O~«2!. ~13!

The maximum value of the first-order correction, given
Eq. ~13!, is essentially determined by two parameters,c and
f. For the low grafting densities of side chains, described
the fairly small values ofc and f, the first-order correction
remains smaller than 1~we take«51 for d53). In this
case, Eq.~13! can be used directly to estimate the addition
swelling of a central side chain due to its interactions w
other chains in the molecule. We would like to note that,
the particular case off 51, the first-order correction stay
quantitatively valid up toc.10. When parametersc and f
are large, Eq.~13! becomes quantitatively irrelevant but ca
be modified to give a few helpful results.

To conclude this section we note that, ultimately, we
interested in the limit of high grafting densitiesa!1 ~or c
@1), when the bottle-brush molecule shows its rich conf
mational behavior. In this limit, the expression forR̄4 can be
noticeably simplified if we substitute the functionC(z) with
its asymptotic expression,

C~z!5 ln~z!2
1

2z
1OS 1

z2D ,

and expand the result in powers ofa. We find

R̄45 f S h1~X!

a
1h2~X!1O~a! D , ~14!

where

h1~X!5~X11!2lnS 11
1

X11D2X2lnS 11
1

XD2 ln 2,
05180
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h2~X!5~X11!lnS 11
1

X11D2X lnS 11
1

XD2 ln 2

1
1

4

X~X13!

~X11!~X12!
.

Substituting Eq.~14! back into Eq.~13! yields

Rt
2

Rt0
2

511
«

8 F f

a
h1~X!1 f h2~X!1~ f 21!S ln 22

1

4D1h~X!G
1O~«2,a«!. ~15!

We shall now analyze Eq.~15! in more detail.

D. Scaling theory in the limit of high grafting densities

A distinct property of the first-order correction, given b
Eq. ~15!, is its dependence on the number of starsM only via
parameterX;aM . Functionsh1(X), h2(X), andh(X) ex-
hibit a crossover between two limiting casesX!1 and
X@1 ~see Fig. 3! that correspond to the two scaling limits i
the behavior ofRt . If the chains comprising a bottle-brus
molecule are ideal, conditionX!1 implies that the size of
the backbone is negligibly small,

Rl

Rt
;

~LM !1/2

N1/2
;X1/2!1.

In the limit X→0, we have

h1~X!

a
→ 2~ ln 221/4!X

a
5~ ln 221/4!~M21!,

h2~X!→0, h~X!→0,

and, therefore,

FIG. 3. Functionsh1(X), h2(X), andh(X) of Sec. III C.
3-4
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Rt
2

Rt0
2

511
«

8
~ f M21!S ln 22

1

4D1O~«2!. ~16!

Equation~16! reproduces the equivalent result for the en
to-end distanceRt* of a linear chain, which belongs to
polymer star comprised off M such chains~cf. the expres-
sion for R̄3). The physical interpretation of this result is a
follows: when the size of the backbone is much smaller th
that of a side chain, allf M chains in a bottle-brush molecul
are grafted virtually onto the same point and the molec
appears to be a star. ForX small but finite, we can expres
the end-to-end distanceRt in the form

Rt5kRt* , ~17!

where

k2511
«

8 F f

a S h1~X!22H ln 22
1

4J XD1 f h2~X!1h~X!G
1O~«2!. ~18!

When the total number of the grafted starsM is large, the
term proportional tof /a in Eq. ~18! is dominant. We should
note that, in the examined case of high grafting densitiea
!1, conditionsX;aM!1 andM@1 are compatible.

The opposite limitX@1 corresponds to the backbon
sizesRl that are substantially larger than the size of a s
chainRt . Figure 3 shows that all functions,h1(X), h2(X),
and h(X), saturate in this limit. This suggests that, in t
case ofRl@Rt , the properties of the side chains are det
mined locally: two chains will have a noticeable effect
each other only if they appear to be in a constant contact.
Ms denote the total number of stars that are grafted wit
the reach of the side chains belonging to the central s
characterized bym15(M11)/2. In the ideal bottle-brush
molecule, the value ofMs can be determined from the con
dition

S L~Ms21!

2 D 1/2

.2N1/2,

which yields

Ms.
8

a
, Xs.4. ~19!

Equation~19! provides a very good estimate for the cros
over valueXs ~see Fig. 3!. Hence, we can rewrite Eq.~15! in
terms of parametersf andMs ,

Rt
2

Rt0
2

511
«

8
f Msh̄1S M

Ms
D1O~«2!, ~20!

where functionsh1 andh̄1 are essentially the same. Note th
in Eq. ~20! only the dominant contribution, proportional t
f /a, is included. We now make an assumption that the s
of the whole series in Eq.~20! has the form
05180
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Rt

Rt0
5~ f Ms!

1/5gS M

Ms
D , ~21!

where

g~X!;H X1/5, X!1

const, X@1.

The value of the exponent in Eq.~21! has been chosen, in th
limit M!Ms , to reproduce the Daoud-Cotton scaling re
tionship for a star containingf M branches@25#,

Rt

Rt0
;~ f M !1/5. ~22!

In the other limitM@Ms , Eq. ~21! yields

Rt
max;~ f Ms!

1/5N3/5. ~23!

When we take into account the higher-order terms in E
~20!, the value ofMs is expected to be different from tha
given by Eq.~19! and should obey the generalized conditio

Rt
max;Rl~Ms!. ~24!

Here Rl(Ms) denotes the size of the backbone in a bott
brush molecule, which includesM5Ms stars. In the follow-
ing sections we calculate the backbone sizeRl(M ) and
present the final results for the quantitiesMs andRt

max.

IV. END-TO-END DISTANCE OF THE BACKBONE CHAIN

The calculation of the backbone sizeRl is largely based
on the material of the preceding section. Thus, the end
end distributionP(q) can be written down in full analogy
with Eq. ~11!,

P~q,$0,0%,$L~M21!,0%!

5P0~q,L~M21!!$12beN
«/2@D1~Q!1D2~Q, f ,a,M !

1D3~Q, f ,a,M !#1O~be
2!%, ~25!

where individual contributionsDi(q) are depicted in Fig. 4.
The diagrams in Fig. 4 allow for different interactio
effects such as interactions of the backbone chain w
itself (D1), interactions of the backbone chain with the si
chains (D2), and interactions of the side chains amo
themselves (D3). The complete expressions for quantiti

FIG. 4. Diagrammatic representations of the first-order corr
tions D1 ~a!, D2 ~b!, D3 ~c! to the end-to-end distribution of the
backbone.
3-5
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P(q) andRl are collected in Appendix C. In particular, in th
limit of high grafting densitiesa!1, we have

Rl
2

2dl2L~M21!
511be~L~M21!!«/2S 2

«
2

2

«12

1
f 2

a2
h1~X,a!12

f

a
h2~X,a!D 1O~be

2!,

~26!

where

h1~X,a!5
4

d~d22!
X212«/2F E

0

X

dx~X2x! f 1~x!

1aE
0

X

dx f1~x!1o~a!G ,
h2~X,a!5

2

d
X212«/2F E

0

X

dx f2~x!1o~1!G , X5a~M21!,

and the functionsf 1(x) and f 2(x) are interpreted in Appen
dix C. Similar to Eq.~15! of the preceding section, Eq.~26!
shows a crossover between two limiting casesX@1 andX
!1 ~see Fig. 5!. In the limit X@1, the asymptotic behavio
of functionsh1 andh2 is equivalent and independent ofa,

h1,2~X,a!5
2

«
2

2

«12
1O~X2«/2!, ~27!

which results in

Rl
2

2dl2L~M21!
511beS 11

f

a D 2

@L~M21!#«/2S 2

«
2

2

«12D
1O~be

2!. ~28!

Equation~28! reproduces the result for the end-to-end d
tance of a linear chain that consists ofn5L(M21) seg-

FIG. 5. Functionsh1(X,a) andh2(X,a) of Sec. IV in the limit
of high grafting densitiesa→0.
05180
-

ments, characterized by the excluded volume param
be f f5be(11 f /a)2. According to the Flory argument, th
end-to-end distance of a polymer chain is given by

R~n,be!;be
1/5n3/5, ~29!

which yields

Rl;S 11
f

a D 2/5

~LM !3/5. ~30!

We note that, within the renormalization group approach,
situation looks slightly more complicated@19#. Here we
should distinguish betweenbe,u* ~the weak coupling re-
gion! andbe.u* ~the strong coupling region!, whereu* is
defined in Appendix A. In the weak coupling region, w
come back to the Flory result for the end-to-end distance
a polymer chain; whereas, in the strong coupling region,
~29! no longer holds and we have instead

R~n,be!;L~be!n
3/5,

whereL(be) is some unknown function ofbe . Thus, if the
ratio f /a is so large thatbe f f.u* , we should replace Eq
~30! by

Rl;L„be~11 f /a!2
…~LM !3/5. ~31!

We would also like to note that, although we assume eve
wherea!1, the leading asymptotics of functionsh1 andh2
do not depend on the value ofa @see Eq.~27!#. This means
that all results obtained in the limitX@1 are also valid when
the grafting densities of side chains are not high.

In the opposite limitX!1, it is convenient to introduce
the ratioRl /Rl0, whereRl0 is the end-to-end distance of th
free backbone chain. Since we assumea!1, we may con-
sider only the dominant contribution;( f /a)2 in Eq. ~26!,
which results in the following« expansion:

Rl
2

Rl0
2

511
«

96
@ f ~M21!#2@11O~X!#1O~«2!. ~32!

For small numbersf M of the side chains, the first-orde
correction in Eq.~32! does not exceed 1. In this case, it c
be used directly to estimate the additional swelling of t
backbone due to the presence of the grafted chains. If
wish to consider larger molecules, the higher-order terms
Eq. ~32! should be taken into account. We suppose that
nth term in Eq.~32! is proportional to (f M )2n and the whole
series sums up to give

Rl;~ f M !2x~LM !3/5. ~33!

The specific value of the exponentx remains undefined in the
present approach and has to be borrowed from other theo
If we expect Eq.~33! to describe the stiff rod geometry of
not very long backbone, as has been suggested by nume
experimental works@1–3,6#, we should assumex51/5. Then
we have

Rl; f 2/5L3/5M;R~L !M , ~34!
3-6
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whereR(L) denotes the size of a backbone subchain, c
fined between two adjacent points of grafting. According
Eq. ~34!, such a subchain is expanded by a factor off 2/5

rather thanf 1/5, as it would be if one of its ends were free
Thus, we can think of a bottle-brush molecule as a wo

like chain, characterized by its total lengthl T5R(L)M and
the persistence lengthl p5R(L)M* ; here we introduced the
crossover parameterM* such that Eqs.~30! and ~34! hold,
respectively, forM.M* and M,M* . Similarly to the re-
sults of the preceding section, the crossover behavior of
backbone chain is governed by the parameterX;aM ,
and so

M* ;1/a. ~35!

However, the actual value of parameterM* is much larger
than that ofMs ~cf. Figs. 3 and 5! and indicates that, in the
present case, we are dealing with the global crossover, w
involves the molecule as a whole. If we take into account
higher-order terms in the renormalized perturbation the
Eqs.~19! and ~35! cease being valid and we have instead

Ms;
1

a S f

a D g1

, M* ;
1

a S f

a D g2

.

The values of exponentsg1 andg2 depend on the exponen
x, defined in Eq.~33!. In the following section we provide an
extra argument in favor of our choicex51/5 and collect the
final results for the end-to-end distancesRt andRl .

V. DISCUSSION

In order to make the results of the previous sections m
complete, let us resort to the simple mean-field analysis.
Flory-type calculation of the dimensions of a bottle-bru
molecule, characterized byf 51, is presented in Ref.@26#;
here we consider the general case whenf is arbitrary. We
start with the mean-field expression for the free ene
F(Rt), which determines the size of a side chain in the lim
of high grafting densities. It reads

F~Rt!; f M
Rt

2

N
1be

~ f MN!2

Rt
2Rl

, ~36!

where we assume that the bottle-brush molecule is foun
the rodlike state and, therefore,Rt.Rt

max @see Eq.~23!#.
Minimizing Eq. ~36! with respect toRt yields

Rt
max;

~ f M !1/4N3/4

Rl
1/4

. ~37!

As shown in the first order of perturbation theory,Rt
max does

not depend on the number of starsM—a result that seems t
be supported by experiment@27#. To satisfy this condition,Rl
in Eq. ~37! should vary linearly withM, which is consistent
with the assumption made on the molecule’s geometry
leads tox51/5 in Eq.~33!. Combining Eqs.~34! and~37! we
obtain
05180
-

e

ch
e
y,
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Rt
max;N3/5S f

a D 3/20

;N3/4f 3/20L23/20. ~38!

The dependence ofRt
max on the chain lengthN is described

by the two-dimensional exponentn53/4. This reflects the
physical situation in which a star is confined to the narr
disk created by the neighboring stars and its branches
wander only in directions perpendicular to the backbone.
alternative way to obtain Eq.~38! is by matching Eqs.~23!
and ~24!, where the backbone sizeRl(Ms) is given by Eq.
~34!. We find

Ms;
1

a S f

a D 21/4

, ~39!

which together with Eq.~23! brings us back to Eq.~38!.
Let us now turn to the properties of a bottle-brush m

ecule as a whole. IfM* is the number of stars grafted on th
molecule’s persistence lengthl p , then forM.M* this mol-
ecule can be considered as a chain ofM /M* cylindrical
segments, each characterized by diameterd;Rt

max and lin-
ear sizel; l p . The excluded volume of such a segment
; l 2d, and we have for the end-to-end distance of a lo
cylindrical brush

Rl;d1/5l p
1/5l T

3/5, ~40!

where l T stands for the brush’s contour length. Taking in
account the estimates

l p;R~L !M* , l T;R~L !M ,

we obtain, from comparing Eqs.~30! and ~40!,

M* ;
1

a S f

a D 1/4

. ~41!

As expected, the crossover parametersMs andM* are given
by different scaling relationships of Eqs.~39! and ~41!. The
resulting expression for the persistence lengthl p has the
form

l p;N3/5S f

a D 13/20

;Rt
maxS f

a D 1/2

. ~42!

For a simple comb copolymer brush, i.e., a bottle-brush m
ecule withf 51, we are aware of three other theoretical p
dictions of the persistence lengthl p . According to Birshtein
et al. @20#, persistence lengthl p is comparable with brush
radius,l p;Rt

max, while the scaling arguments by Fredrick
son @21# show thatl p;Rt

maxN9/8. A more recent conclusion
of the self-consistent field analysis@15# is that l p

;Rt
maxN5/4. The present result corresponds tol p;Rt

maxN1/2

and falls in between these other predictions. We note, h
ever, that the argument we apply to obtain the persiste
length l p of the long bottle-brush molecule is largely bas
on the assumption that the molecule folds as a self-avoid
cylindrical chain. If we suppose that parts of this chain c
3-7
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penetrate each other, we would find a larger value ofl p in
comparison with that given by Eq.~42!.

We now comment on a few interesting properties of
scaling relationships presented here. First of all, from
physical perspective, we expect each star to have an un
turbed three-dimensional core, which comprises the inn
most subchains of lengthNc and has a radiusRc; f 1/5Nc

3/5.
Beyond the core region a star should retrieve its global tw
dimensional behavior, so thatRc can also be estimated from
Eq. ~38!. On the basis of this observation, we have

Nc;L f 1/3,

Rc;L3/5f 2/5;R~L !.

We see that the size of the unperturbed zone is determine
the interstar distanceR(L), a result consistent with ou
physical expectations.

Another supporting fact in favor of the present approa
is that the scaling relationship of Eq.~30! can also be ob-
tained by the simple mean-field analysis. This amounts
presenting the molecule’s free energy as a function of
backbone sizeRl ,

F~Rl !;
Rl

2

LM
1be

~ f MN1LM !2

Rl
3

,

and minimizing it with respect toRl .
Finally, we would like to note that, in the case of hig

grafting densities, all the scaling factors that allow for t
interactions of the side chains, depend on the single par
eter f /a.

VI. CONCLUSION

In this paper, we have investigated the conformatio
properties of a bottle-brush molecule placed in a very go
solvent. We started by calculating the end-to-end distance
the backbone and of a central side chain to the first orde
the general and renormalized perturbation theories. The
tained expressions revealed a complex dependence on
rametersf and a, wheref is the number of side chains a
tached to each point of branching anda is inversely
proportional to the density of such points along the ba
bone. Whenf ;1 and a;1, the first-order terms in the
renormalized perturbation theory provide a true estimate
the additional swelling of the grafted chains and the ba
bone. In the opposite limit of high grafting densitiesa!1
and large values off, the perturbation theory becomes qua
titatively invalid but can be generalized to give the corre
scaling laws. Naturally, the resulting scaling relationships
pend on parameterf only via the ratiof /a. This is the ratio
between the total molecular weightf N of the side chains,
attached to each point of grafting, and the molecular wei
L of a backbone subchain, confined between two neighbo
grafting points.

If the grafting density of the side chains is high and co
stant, the bottle-brush molecule may adopt three differ
conformations as the size of the backbone grows. When
05180
e
a
er-
r-

-

by

h

to
e

m-

l
d
of
of
b-
pa-

-

f
-

-
t
-

t
g

-
nt
he

size of a side chainRt significantly exceeds the backbon
size Rl , the molecule’s structure resembles a star in wh
the number of arms is equal to the total number of s
chains f M . In this regime, the side chains are swollen u
formly in all directions and their size is given by the Cotto
Daoud expression of Eq.~22!. The first~local! crossover ap-
pears when the size of the backbone becomes compa
with that of a side chain, i.e.,Rl;Rt . At this point, the
swelling of the side chains drastically slows down and, as
size of the backbone grows further, the bottle-brush molec
starts to resemble a long stiff cylinder. Inside this cylind
the side chains are swollen in the direction perpendicula
the backbone, and the dependence of the chain’s size o
length is defined by the two-dimensional exponentn53/4.
The molecule starts to bend when the size of its backb
exceeds the persistence lengthl p of the formed cylindrical
brush. This marks the second~global! crossover, which de-
scribes the configurational changes of the entire cylindr
brush as its internal structure remains unchanged. Ultima
such a brush should adopt a coiled conformation when
length of the backbone is very large.
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APPENDIX A: BASIC IDEAS OF THE RENORMALIZED
PERTURBATION THEORY

In this appendix we present a very short summary of
renormalized perturbation theory as is explained in Ref.@19#.

Let us consider a single polymer chain consisting on
segments, each characterized by its linear sizel and the ex-
cluded volume parameterbe . It is known that the genera
perturbation theory for such a system orders in powers
parameterW5ben

«/2, where

«542d

andd is the spatial dimension. For chains with a high deg
of polymerizationn, parameterW is large and the genera
perturbation theory diverges. The main idea consists in m
ping the given polymer chain onto a much shorter one,
which the perturbation theory would be applicable. For t
purpose, we perform a spatial dilatation such that the
ementary lengthl transforms according to

l→ l R5 l /l, 0,l,1. ~A1!

Since the physical observables should remain invariant u
this transformation, parametersbe andn should be adjusted
accordingly. The dimensional analysis yields

be→u, be5l«uZu~u! ~A2!

and

n→nR , n5l22nRZn~u!, ~A3!
3-8
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whereZu(u) andZn(u) are the relevant renormalization fa
tors. Within the so-called scheme of ‘‘dimensional regul
ization’’ and ‘‘minimal subtraction’’@19#, we have the fol-
lowing expressions forZu andZn :

Zu~u!5
1

2 S 11
4

«
u1O~u2! D , ~A4!

Zn~u!512
1

«
u1O~u2!. ~A5!

It can be shown that the mapping given by Eqs.~A1!–~A5!
justifies the ‘‘fixed point’’ hypothesis that states that para
eteru approaches some constant valueu5u* asl→0. The
limiting value u* is known up to the second order in the«
expansion and reads

u* 5
«

4
1

21

128
«21O~«3!. ~A6!

We can now define the excluded volume limit as a limit th
is reached if, under renormalization, parameteru approaches
the fixed point so closely that it can be replaced byu* .
Clearly, the excluded volume limit requires the initial degr
of polymerizationn to be sufficiently high so thatl is close
to zero whennR.1. According to Eqs.~A4!–~A6!, in the
excluded volume limit the renormalized perturbation theo
essentially amounts to expanding in powers of«. Thus, in
the present work we perform all calculations up to the fi
order in the« expansion.

APPENDIX B: FIRST-ORDER CORRECTIONS
TO THE END-TO-END DISTANCE Rt

In this appendix we present a series of analytical exp
sions for the end-to-end distance of a side chain. We s
with Eq. ~11! of the main text and calculate the individu
diagramsDi(q) with the help of the Feynman rules ex
plained within. We obtain

P~q,$0,k1%,$N,k1%!

5P0~q,N!F12beN
«/2(

i 51

4

Di~Q!1O~be
2!G ,

~B1!

D1~Q!5E
0

1

dx1~12x1!x1
2d/2@exp~Qx1!21#,

D2~Q!5D̄2~Q,M2m1!1D̄2~Q,m121!,

D̄2~Q,M̄ !5E
0

1

dx1E
0

M̄a
dx2~x11x2!2d/2

3FexpS Qx1
2

x11x2
D 21G ,
05180
-

-
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s-
rt

D3~Q!5~ f 21!E
0

1

dx1E
0

1

dx2~x11x2!2d/2

3FexpS Qx1
2

x11x2
D 21G ,

D4~Q!5D̄4~Q,M2m1!1D̄4~Q,m121!,

D̄4~Q,M̄ !5 f (
k51

M̄ E
0

1

dx1E
ka

ka11

dx2~x11x2!2d/2

3FexpS Qx1
2

x11x2
D 21G ,

where we have employed the same set of variables as in
~11!. Since the scaling properties of all side chains are
same, we will focus our attention on the central starm1
5(M11)/2. In this case combining Eqs.~B1! and~5! yields

Rt
252dl2NF11beN

«/2(
i 51

4

Ri1O~be
2!G , ~B2!

where

R15
2

«
2

2

«12
, R252E

0

1

dx1E
0

M̄a
dx2x1

2~x11x2!2d/221,

R35~ f 21!E
0

1

dx1E
0

1

dx2x1
2~x11x2!2d/221,

R452 f (
k51

M̄ E
0

1

dx1E
ka

ka11

dx2x1
2~x11x2!2d/221,

andM̄5(M21)/2.

APPENDIX C: FIRST-ORDER CORRECTIONS
TO THE END-TO-END DISTANCE Rl

The complete expressions for the end-to-end distribut
P(q) of the backbone chain are as follows:

P„q,$0,0%,$L~M21!,0%…

5P0„q,L~M21!…F12beN
«/2(

i 51

3

Di~Q!1O~be
2!G ,

~C1!

where

D1~Q!5@a~M21!#«/2E
0

1

dx1~12x1!x1
2d/2@exp~Qx1!21#,
3-9
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D2~Q!52 f (
k51

M21 E
0

ka

dx1E
0

1

dx2~x11x2!2d/2

3FexpS Qx1
2

x11x2
D 21G ,

D3~Q!5 f 2 (
k51

M21

~M2k!E
0

1

dx1E
0

1

dx2~x11x21ka!2d/2

3FexpS Qk2a2

x11x21ka D21G .
Combining Eqs.~C1! and ~5! yields

Rl
252dl2L~M21!F11be„L~M21!…«/2(

i 51

3

Ri1O~be
2!G ,

~C2!

where

R15
2

«
2

2

«12
,

da

c

d

I.
ro

un

,

en

05180
R252 f „a~M21!…212«/2

3 (
k51

M21 E
0

ka

dx1x1
2E

0

1

dx2~x11x2!2d/221,

R35 f 2
„a~M21!…212«/2

3 (
k51

M21

a2k2~M2k!E
0

1

dx1E
0

1

dx2

3~x11x21ka!2d/221.

In the case of high grafting densitiesa!1, the sums overk
in the above expressions can be substituted by integ
which leads to Eq.~26! of the main text. We do not rewrite i
here but specify functionsf 1 and f 2:

f 1~x!5x2@x12d/21~21x!12d/222~11x!12d/2#,

f 2~x!5
1

32d/2
@x32d/2112~x11!32d/2#2

2

22d/2

3@12~x11!22d/2#1
1

12d/2
@12~x11!12d/2#.
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